Neurogenetics – Genetic Testing and Ethical Issues

Grace Yoon, MD, FRCP(C)
Divisions of Neurology and Clinical and Metabolic Genetics
The Hospital for Sick Children
Objectives

1) To recognize the ethical issues to consider when obtaining consent for genetic testing

2) To develop an appreciation of molecular techniques utilized for diagnosis of neurogenetic disorders
Disclosure

• I have no conflicts of interest to disclose
Outline

• Ethical issues to consider when consenting patients for genetic testing
 ➢ Predictive testing
 ➢ Exome sequencing

• Establishing a diagnostic strategy (2 clinical scenarios)
 ➢ Selecting a lab / test
 ➢ Assessing the validity of a test
 ➢ Limitations/Challenges of different diagnostic strategies
Evolution of Genetic Tests
Ethical Issues – eg. HD

- Symptomatic vs predictive testing
- Depressive symptoms
- Timing of results
- Coping with results
- Effect on relationships
- Support
- Family planning
- Career decisions
- Insurance
Family History of HD
Common Issues after Results

Positive
- Unexpected reaction
- Meaning of repeat size
- Family planning issues
- When will I have HD?
- Telling family/friends
- Planning for the future

Negative
- Unexpected reaction
- Survivor guilt
- Regrets over life choices
- Telling family/friends
- Planning for the future
Nothing is predictable in predictive testing

- Patient reactions may be unexpected
- Molecular testing results may be difficult to interpret
- The disease course itself may be unpredictable
Considerations in Reproductive Planning

- What will I do with the information?
- HD 30 years from now...
- Religious, ethical, moral issues
- Impact of my disease on my future children
- Timing of having family
- Choosing the best reproductive option for us
Reproductive Options

<table>
<thead>
<tr>
<th>Choice grid</th>
<th>Prenatal Diagnosis</th>
<th>No Prenatal Diagnosis</th>
</tr>
</thead>
</table>
| Assisted Reproduction | ICSI with IVF (PND to confirm ICSI result still recommended) | Sperm/egg donor
 | | Embryo adoption
 | | Adoption |
| Natural Reproduction | CVS
 | Amniocentesis | Have a baby |
Whole exome sequencing (WES) in clinical practice

80-85% of known disease causing variants (estimated)
Parent/patient motivation for WES

• Are these different from traditional genetic testing?
 – What is the diagnosis?
 – How did this happen?
 – Is there cure/treatment?
 – Is there prognostic information?
 – Who else is affected/at risk?

• Greater expectation for a diagnosis by WES among HCPs

• Promise of diagnosis can overshadow possible limitations of the test
Impact of WES/WGS in clinical practice

- WES: 25% dx rate 75% remain undiagnosed
- WGS: 30-35% dx rate 65-70% remain undiagnosed
 - Microarray 10-15% dx rate
Tailor information

Allow time for decision making

Manage expectations

Put test in context

Informed consent

Utility
Informed consent – an evolving concept

• Long-standing core competency for geneticists and genetic counselors

• Traditional informed consent has included specific details: contracting, procedures, possible risks (consanguinity, non-paternity), family hx assessment

• WES/WGS consent has expanded to include:
 – Focused genetic test result for a particular indication
 – Secondary/incidental findings - wide range of medically actionable and non-actionable conditions with varied penetrance, age of onset and symptoms
 – Possibility of reanalysis and updated or new variant results over time

• Uncertainty about type of results that will be returned, when and how they will be returned
 – Challenges specific to secondary findings
Elements of informed consent for exome sequencing

What is Exome sequencing

Types of results possible

Additional findings

Turn-around time & other logistics

Potential benefits & limitations

30-45 minutes

- Don’t expect all families to want WES
- Leave time to answer questions
- Parents may need more time to discuss
 - Who to test
 - Which results to return
- Insurance

Valid consent is...
- voluntary
- informed
- with capacity to make a decision
Types of possible results

- Primary diagnostic findings
- Secondary/additional findings
- Carrier status

- 25-35%
- 3-5%

Pathogenic, likely pathogenic, VUS, likely benign, benign
Secondary findings:
Lab and institution-dependent
ACMG 3-5%
Expanded list 13-14%
Typically includes risk of “treatable” disease but can also include neurodegenerative conditions
ACMG reportable list

- Hereditary breast and ovarian cancer
- Li–Fraumeni syndrome
- Peutz–Jeghers syndrome
- Lynch syndrome
- Familial adenomatous polyposis
- MYH-associated polyposis
- Juvenile polyposis
- Von Hippel–Lindau syndrome
- Multiple endocrine neoplasia type 1
- Multiple endocrine neoplasia type 2
- Familial medullary thyroid cancer
- PTEN hamartoma tumor syndrome
- Retinoblastoma
- Hereditary paraganglioma–pheochromocytoma syndrome
- Tuberous sclerosis complex
- WT1-related Wilms tumor
- Neurofibromatosis type 2
- Ehlers–Danlos syndrome, vascular type
- Marfan syndrome, Loeys–Dietz syndromes, and familial thoracic aortic aneurysms and dissections
- Hypertrophic cardiomyopathy, dilated cardiomyopathy
- Catecholaminergic polymorphic ventricular tachycardia
- Arrhythmogenic right-ventricular cardiomyopathy
- Romano–Ward long QT syndrome types 1, 2, and 3, Brugada syndrome
- Familial hypercholesterolemia
- Wilson disease
- Ornithine transcarbamylase deficiency
- Malignant hyperthermia susceptibility
Challenges specific to disclosure of exome results

• Rare and ultra-rare diseases
 – Lack of communities of experts and management guidelines

• Atypical presentation of well-understood Mendelian disorders
 – “Affected”, “at risk”, “unaffected”
 – More counselling time and resources
 – Difficult to predict presentation in patient and other affected family members

• Partial diagnoses
 – Unexpected
 – Analysis is more difficult
Challenges – cont.

- Managing expectations
 - Not all pathogenic variants can be identified
 - No diagnostic variants = not genetic?
 - Who is being sequenced?
 - TAT, familial testing

- Different families have different responses to same result
 - Difficult to anticipate due to wide range of possible results

- Secondary/incidental/additional findings
 - Which ones and for whom?
 - Medical management in the context of more acute concerns
 - Lack of personal and family hx may affect choices
 - Time and resources required for interpretation, cascade testing and management
Establishing a diagnostic strategy

Choosing a multigene panel

• More genes is **not** always better!

 • More Variants of Uncertain Significance (VUSs)
 • Labs may include syndromic and nonsyndromic conditions associated with a disorder, and disorders where a given feature (e.g. epilepsy) is classically one of many others.

 – Targeted panels that include fewer genes may provide more robust analysis and coverage of the genes included, as they focus solely on the genes of interest
Establishing a diagnostic strategy
Selecting a test / lab

- Genetic Test Registry
- GeneTests
 - www.Genetests.org
- Orphanet
 - https://www.orpha.net/
Establishing a diagnostic strategy

What follow-up testing should I consider?

• Segregation studies
 • For an **Autosomal Recessive (AR)** condition:
 – Del/dup vs parental testing
 • For an **Autosomal Dominant (AD)** or **X-Linked (XL)** condition:
 – Familial testing of relevant family member(s)
 – Interpretation of the inheritance of the variant can help clarify the likelihood of pathogenicity

• **Consider non genetic tests to interpret variants**
 – follow up studies are sometimes more informative than testing more genes
Reasons for Negative Exome Results

• A pathogenic variant may exist that the testing was not able to detect (e.g. an intronic variant)

• A pathogenic variant is present in a gene that was not tested or not yet discovered

• Clinical presentation may not be due to an underlying genetic cause (less likely)
Teaching Points

• Pre-test counselling is essential when considering genetic testing
• Communication between clinicians and the laboratory is crucial for optimal clinical utilization of genetic testing
• Genetic testing is not a substitute for careful clinical evaluation
Resources for Clinicians

- OMIM
- GeneReviews
- Genetic Testing Registry
- Orphanet
- Neurogenetics clinic at the Hospital for Sick Children