Autoimmune Neurology: Paraneoplastic Disorders & Beyond

Andrew McKeon, MD
Mayo Clinic
Disclosures

• I receive research support from Euroimmun

• I have consulted for Medimmune, Euroimmun & Grifols (no personal compensation)

• I have patent applications for MAP1B and Septin 5 Abs as markers of neurological disease and cancer.
Outline

• Risk factors for autoimmune neurological disorders?
• How do I evaluate further?
 - Basic serum/CSF testing
 - Neural antibody (Ab) testing
 - Treatment trial in suspected cases
 ‘The diagnostic test’
Why Suspect an Autoimmune Neurological Disorders?
Phenotype

- Rapid onset
- Rapid progression
- Classic phenotypes
- Atypical phenotypes
- Multifocal disorders
Classic Disorders

• Limbic encephalitis
• Chorea
• Cerebellar degeneration
• Brainstem encephalitis
• Opsoclonus-myoclonus syndrome
• Myelopathy
• Stiff-person syndrome
• Sensory ganglionopathy/neuronopathy
• Lambert-Eaton myasthenic syndrome (LEMS)
Beyond Classical Phenotypes

Disorders at presentation may be:

Limited
- Epilepsy
- Dementia
- Stiff-limb

More widespread/multifocal
- Encephalomyelitis
- Chorea + neuropathy
- Ataxia and LEMS
What are the risk factors?

- Sometimes none
- Coexisting autoimmune disease, e.g. thyroid disease, type 1 diabetes mellitus
- Cancer history
- Smoking history
- Family history of autoimmune disease or cancer
How do I evaluate further?

- Determine extent of neurological involvement:
 - Neurological examination
 - Mental status testing
 - Neuropsychometric testing
 - MRI imaging
 - Electrophysiology (EEG, EMG, SSEPs)
How do I evaluate further?

- **Ab testing, serum:**
 - Non-neural Abs: e.g. thyroid peroxidase Abs, connective tissue cascade
 - Neural Abs: main subject of this course

- **CSF testing:** protein, white cell count, IgG index and synthesis rate, oligoclonal bands, neural Abs
Why do autoimmune neurological diseases occur?
The diagram illustrates the immune response to antigen presentation and cell activation.

IgG effectors
- Plasma membrane antigen
- Antibodies (tumoricidal potential)
- Antigen (△, ■) presentation + immune cell activation

T-cell effectors
- Cytotoxic T-cells
- Intracellular antigen

Cell death
- Proteasomal degradation → peptide → MHC1

Antigen internalization
- Endo-lysosomal degradation

Adaptive immune response
- Plasma cell: stimulates B-cell activation through ADCC (Antibody-Dependent Cellular Cytotoxicity)
- B-cell: produces antibodies
- Complement activation
- Fc receptor activation

Cellular targets
- Neuron or Astrocyte
- Nucleus
Neural Abs Overview

IgG Antibodies targeting

Neural cell surface antigens

(iion channels, receptors, synapses)

- e.g. VGKC complex Ab, NMDA-R Ab, GlyR

Immunotherapy

Neuronal nuclear, cytoplasmic antigens

- e.g. ANNA-1, PCA-1, CRMP-5 IgG

Oncological therapy
Neuronal nuclear or cytoplasmic Abs

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Oncological association</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANNA-1 (anti-Hu)</td>
<td>Small-cell carcinoma</td>
</tr>
<tr>
<td>ANNA-2 (anti-Ri)</td>
<td>Small-cell carcinoma</td>
</tr>
<tr>
<td></td>
<td>Breast adenocarcinoma</td>
</tr>
<tr>
<td>ANNA-3</td>
<td>Aerodigestive carcinomas</td>
</tr>
<tr>
<td>AGNA (SOX-1)</td>
<td>Small-cell carcinoma</td>
</tr>
<tr>
<td>PCA-1 (anti-Yo)</td>
<td>Gynecological adenocarcinomas</td>
</tr>
<tr>
<td></td>
<td>Breast adenocarcinoma</td>
</tr>
<tr>
<td>PCA-2</td>
<td>Small-cell carcinoma</td>
</tr>
<tr>
<td>CRMP-5 IgG (anti-CV2)</td>
<td>Small-cell carcinoma</td>
</tr>
<tr>
<td></td>
<td>Thymoma</td>
</tr>
<tr>
<td>Amphiphysin IgG</td>
<td>Small-cell carcinoma</td>
</tr>
<tr>
<td></td>
<td>Breast adenocarcinoma</td>
</tr>
<tr>
<td>GFAP-IgG</td>
<td>Teratoma, other</td>
</tr>
<tr>
<td>NIF-IgGs</td>
<td>Neuroendocrine (small cell, Merkel cell, other)</td>
</tr>
</tbody>
</table>
Synaptic Autoantibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Oncological association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lgi1/CASPR2</td>
<td>Thymoma, other</td>
</tr>
<tr>
<td>NMDA receptor</td>
<td>50% Ovarian teratoma</td>
</tr>
<tr>
<td>AMPA receptor</td>
<td>70% Thymoma, lung carcinoma, breast carcinoma</td>
</tr>
<tr>
<td>GABA-B receptor</td>
<td>50% Small-cell lung carcinoma</td>
</tr>
<tr>
<td>P/Q & N type calcium channel</td>
<td>Small-cell carcinoma, breast or gynecological adenocarcinoma</td>
</tr>
<tr>
<td>GlyR</td>
<td>Thymoma</td>
</tr>
<tr>
<td>DPPX</td>
<td>Occasional B cell neoplasm</td>
</tr>
<tr>
<td>IgLON5</td>
<td>None</td>
</tr>
<tr>
<td>PCA-Tr (DNER)</td>
<td>Hodgkin lymphoma</td>
</tr>
</tbody>
</table>
How Are Patients Evaluated in the Laboratory?
How are Abs detected?

Indirect immunofluorescence screening

Confirmation by:
- Western blot
- Cell based assay
- Immunoprecipitation

Immunoprecipitation assay screening

Cell based assay screening
Examples of Abs Accompanying Autoimmune CNS Disorders
Encephalitis

- Memory, mood, personality changes, seizures: limbic encephalitis
- *Diverse autoantibody associations:*
 - ANNA-1, 2 (anti-Hu, Ri)
 - CRMP-5 IgG
 - Lgi1, CASPR2 IgGs
 - GAD65 Ab (High titer)
 - AMPA, GABA-B receptor Abs
 - mGluR5 Ab
Cognitive disorders

- Cognitive-predominant presentations, not typical for limbic encephalitis
- May have coexisting neurological problems (e.g. tremor, neuropathy)
- Thyroid autoimmunity common
- VGKC complex Abs > GAD65 Ab > N or P/Q type calcium channel Abs > ANNA-1 (anti-Hu)
- Pre- and post objective testing helpful in defining treatment response

Flanagan et al, *Mayo Clinic Proceedings* 2010
Autoimmune Epilepsy

- May have seizure predominant presentation
- Scan may be normal at onset in half
- **Dx:** EEG, CSF, Ab testing
- VGKC complex Abs > GAD65 Ab > CRMP-5 IgG > Ma2 = NMDA receptor Ab = GABA-B-R-IgG
- GABA-A-R-IgG

Localizations

- Mesial temporal
- Neocortical temporal
- Precentral
NMDA-R Encephalitis

- **Stereotyped course:**
 - Psych → seizures, encephalopathy
 - → movement disorder, dysautonomia
 - → hypoventilation + coma

- **F>M**
- **50% have ovarian teratoma**
- **CSF testing:** more sensitive and specific
- **Treatment:** steroids/IVIg or PLEX/rituximab/cyclophosphamide
- **80% get to mild or no disability**

Titulaer, Lancet Neurology 2013
ADEM: AQP4 and MOG Abs

- **Assay**: Cell-based format

 IgG1 anti-human secondary Ab for MOG

- **Syndromes**: Optic neuritis, Myelitis, ADEM or ADEM-like, Brainstem disorders, NMO

- **Clinical course**: monophasic, relapsing
 often ++ steroid responsive

Lopez et al, in press, JAMA Neurol, 2018.
• Inflammatory CNS disorder
• Meningitis
• Encephalitis
• Myelitis
• Inflammatory CSF
• Sometimes paraneoplastic
• Steroid responsive
GFAP-IgG

Symptom onset treated with IVIG, IVMP & prednisone 80 mg/day

1 month after onset improved; prednisone 80 mg/day maintained with planned taper & mycophenolate 2g/day added

16 months after onset relapsed on prednisone 7.5 mg/day; added IVMP; increased prednisone to 60 mg/day & mycophenolate to 2.5 g/day

20 months after onset improved

Flanagan et al, Ann Neurol, 2017
Opsoclonus-myoclonus

- **Children**
 - Neuroblastoma
 - ANNA-1 in a minority
- **Adults**
 - 15% paraneoplastic
 - ANNA-2 > ANNA-1 = NMDA-R
 - Frequently idiopathic autoimmune (immunotherapy responsive)

Klaas et al, Arch Neurol 2012
Opsoclonus OR myoclonus

‘Opsoclonus only’
- ANNA-2 (anti-Ri)
- Breast adenocarcinoma

‘Whole body tremor’
- Small amplitude generalized polymyoclonus
- No opsoclonus
- 25% have autoimmune cause
- Occult cancer possible
- VGKC, Alpha 3 ganglionic, CRMP-5 IgG

McKeon et al, Arch Neurol, 2007
Chorea

- Paraneoplastic or idiopathic autoimmune

 - **Paraneoplastic:**
 - CRMP-5 IgG
 - ANNA-1
 - GAD65

 - **Idiopathic autoimmune:**
 - Lupus, APL Ab syndrome
 - CASPR2

O’Toole et al, Neurology 2013
Chorea

- *Paraneoplastic patients more likely:*
 - Older
 - Male
 - More frequent weight loss
 - More frequent coexisting peripheral neuropathy
 - Some improved with immunotherapy/cancer therapy
- *Idiopathic*
 - Often milder course
 - Improved/resolved with steroids

O’Toole et al, Neurology, 2013
Cerebellar ataxia

- Symptoms frequently overlap with brainstem disorders
- Rapid-onset dysarthria, incoordination, gait disturbance, vertigo
- **Prototypic disorder:** PCA-1 (anti-Yo) associated cerebellar degeneration in women with mullerian or breast adenocarcinoma
- **Other Abs:** P/Q-type calcium channel Ab, GAD65 Ab, PCA-Tr, mGluR1 Ab

Peterson et al, Neurology 1992
McKeon et al, Arch Neurol 2010
mGluR1 Ab

Neurological
- Ataxia
- Limbic symptoms (rare, at onset)
- Dysgeusia (40%, at onset)

Cancer
- Lymphoma (HD, non-HD), prostate adenocarcinoma

Sillevis-Smitt, NEJM, 2000
Lopez et al, Neurology, 2016.
Septin-5-IgG

- Cerebellar ataxia
- Oscillopsia, vertigo
- Improvements with immunotherapy

- GTP-binding neural protein
- Neurotransmitter exocytosis

Honorat et al, N2, in press
Brainstem

- Eye movement disorders
- Dysphagia, dysarthria
- Parkinsonism
- Sleep disorders
- e.g. ANNA-2, MaTa

Pittock et al, Ann Neurol 2003
Dalmau et al, Ann Neurol 2004

- **Video:**
 - Initial Dx: PSP
 - Parkinsonism, narcolepsy-cataplexy
 - Ma1, Ma2 Ab positive
 - Tonsillar carcinoma

Adams et al, Arch Neurol 2011
IgLON5

- Sleep disorders
- Chorea
- Parkinsonism
- Dysphagia
- Dysautonomia
- Stiff-person syndrome
- ? Treatment responsive

Honorat et al, 2017, N2
First case seen in 1924.

Reported in 1956 with 13 other cases.

GlyR-IgG in Stiff-man Syndrome

• 10/81 patients tested positive (12%, GlyR cell binding assay)

GAD65-IgG + N=60

Classic SMS Variant SMS PERM

GAD65-IgG - N=21

Classic SMS Variant SMS PERM Hyperekplexia

N=43 N=16 N=1

N=4 N=14 N=2 N=1

GlyR-IgG +

2 4 0

2 1 1 0

Improved with immunotherapy

5 of 6 GlyR-IgG + patients

7 of 25 GlyR IgG - patients (p=0.02)

Mayo, Barcelona JAMA Neurol, 2013
GlyR-IgG

- GlyRα1-IgG +:
 - 21/247 patients
 - 8/190 healthy subjects (4%)
- Only SPS spectrum patients serums internalize GlyRα1
- SPS spectrum phenotypes:
 - PERM (8)
 - Classic SPS (5),
 - Stiff-limb (5)
 - Stiff-trunk (1)
 - Isolated exaggerated startle (hyperekplexia, 1).

Hinson et al, N2, 2018
GlyR-IgG Modulating Assay

Hinson et al, N2, 2018
DPPX Autoimmunity, Manifestations in 20 patients

<table>
<thead>
<tr>
<th>Neurological</th>
<th>Central hyperexcitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive disorders</td>
<td>PERM (R rigidity + myoclonus</td>
</tr>
<tr>
<td>Brainstem/spinal cord disorders</td>
<td>Myoclonus</td>
</tr>
<tr>
<td>Weight loss</td>
<td>Startle</td>
</tr>
<tr>
<td>Myoclonus or tremor</td>
<td>Rigidity</td>
</tr>
<tr>
<td>Sleep disorder</td>
<td>Brisk reflexes</td>
</tr>
<tr>
<td>Gastrointestinal dysautonomia</td>
<td>Stiff-man syndrome</td>
</tr>
<tr>
<td>Delirium</td>
<td></td>
</tr>
<tr>
<td>Cerebellar dysfunction</td>
<td></td>
</tr>
<tr>
<td>Urinary symptoms</td>
<td></td>
</tr>
<tr>
<td>Psychosis</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td></td>
</tr>
<tr>
<td>Cardiac dysrhythmialia</td>
<td></td>
</tr>
<tr>
<td>Diaphoresis</td>
<td></td>
</tr>
<tr>
<td>Temperature dysregulation</td>
<td></td>
</tr>
<tr>
<td>Weight loss</td>
<td></td>
</tr>
<tr>
<td>Myoclonus or tremor</td>
<td></td>
</tr>
<tr>
<td>Sleep disorder</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal dysautonomia</td>
<td></td>
</tr>
<tr>
<td>Delirium</td>
<td></td>
</tr>
<tr>
<td>Cerebellar dysfunction</td>
<td></td>
</tr>
<tr>
<td>Urinary symptoms</td>
<td></td>
</tr>
<tr>
<td>Psychosis</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td></td>
</tr>
<tr>
<td>Cardiac dysrhythmialia</td>
<td></td>
</tr>
<tr>
<td>Diaphoresis</td>
<td></td>
</tr>
<tr>
<td>Temperature dysregulation</td>
<td></td>
</tr>
</tbody>
</table>

Tobin et al, Neurology, 2014
Paraneoplastic Myelopathy

- Subacute or insidious onset
- Lung, breast, kidney, thyroid, ovary/endometrium, melanoma, or other.
- Amphiphysin IgG, CRMP-5 IgG, ANNA-1, PCA-1, ANNA-3
- Minority improve with treatment
- 50% Wheelchair bound

Neuronal Intermediate Filaments

- Encephalopathy
- Ataxia
- Myelopathy
- Small cell carcinoma
- Merkel cell carcinoma
- 5 NIF targets
 - α internexin
 - Light chain
 - Medium chain
 - Heavy chain
 - Peripherin

Basal et al, AAN, Los Angeles, Friday 4-27-18
Cancer screening

- **Small cell/neuroendocrine**: PET-CT, CT
- **Other lung cancer types**: PET-CT, CT
- **Thymoma**: high res CT or MRI
- **Lymphoma**: PET-CT
- **Breast**: mammogram/breast exam
- **Lymph node disease**: PET-CT
- **Prostate**: digital rectal exam, PSA
- **Gynecological**: clinical exam, US with transvaginal
- **Renal**: CT
- **GI**: endoscopies
- **Thyroid**: ultrasound, PET-CT
- **Skin**: dermatologist exam
Treatment: principles

- Trials of immunotherapy
- Measure improvement objectively
- Determining if short-term or long term treatment required
- Consider steroid-sparing agent
Cytotoxic T cell mediated disorders

- Paraneoplastic disorders
 - Do not generally have good responses to steroids, IVIg or plasma exchange

- General approach:
 - Oncological therapy (surgery, chemotherapy, radiation therapy)
 - Cyclophosphamide

McKeon, Curr Treat Options Neurol, 2013
Antibody-mediated disorders (definite or possible)

- Acute (early important)
 - Corticosteroids
 - Intravenous immune globulin (IVIg)
 - Plasma exchange
- Chronic
 - Mycophenolate mofetil
 - Azathioprine
 - Rituximab, cyclophosphamide
Autoimmune Ataxia: Treatments & Outcomes

50% wheelchair dependent by 25.5 months

Jones et al, JAMA Neurol 2015
‘Checkpoint’ inhibitors

- **Peripheral**: block PD-1 (pembrolizumab, nivolumab)
- **Central**: CTLA-4
- **Outcome**: Autoimmunity
 - Retinopathy
 - Encephalitis
 - Myasthenia gravis
 - Necrotizing myopathy

Kao et al, JAMA Neurol, 2017
Summary

- Autoimmune neurological disorders are important to consider
 - Potentially treatable
 - May be indicative of occult cancer
- Clues may emanate from
 - history
 - examination
 - serum & CSF Ab evaluations
 - response to treatment
Thank you

Andrew McKeon
mckeon.andrew@mayo.edu
507-266-3196