APHERESIS: INSIDE THE BLACK BOX

K. Pavenski, MD FRCPC
Head, Division Transfusion Medicine, St. Michael’s Hospital
Associate Professor, Departments of Medicine and Laboratory Medicine, University of Toronto

June 26, 2018 CNSF Annual Meeting
Learning Objectives

- Re: apheresis, discuss
 - General principles
 - Instruments
 - Vascular access
 - Replacement fluids
 - Types of procedures
 - Adverse events
- Review evidence-based indications for plasma exchange in neurology
- Review current trends in apheresis utilization in Canada
Disclosures

- I have no relevant conflicts of interest
- Other disclosures
 - Advisory board participation: Alexion, Shire, Ablynx
 - Honoraria for speaking: Alexion, Novartis, Shire
 - Clinical trials: Ablynx, CSL Behring, Octapharma
 - Research funding: CSL Behring
Apheresis

- Derived from Greek *apairesos* or Roman *aphairesis* meaning to take away by force
- Medical technology in which the blood of a person is passed through an apparatus that separates out one particular constituent and returns the remainder to the circulation
- Other names
 - Therapeutic plasma exchange, plasmapheresis

https://en.wikipedia.org/wiki/Apheresis
Apheresis as a Therapeutic Modality: Key Considerations

- Disease is caused by a pathogenic substance in blood
- Pathogenic substance can be efficiently removed
- Removal will lead to either a resolution of pathogenic state or decrease in morbidity
 - Examples: auto or allo antibodies, antigen-antibody complexes, paraproteins, etc.
Apheresis as a Therapeutic Modality: Effectiveness

- Effectiveness depends on:
 - Volume of plasma removed relative to total plasma volume (more)
 - Distribution of substance to be removed (low volume of distribution, mainly intravascular)
 - Speed at which the substance re-equilibrates between compartments (instantaneous)
 - Rate at which substance is synthesized (slow)
 - Molecular size of substance (>15,000D)
Relationships between internal compartmental and external distribution of target molecules during apheresis
Apheresis as a Therapeutic Modality: Examples of Treatment Regimens

<table>
<thead>
<tr>
<th>Disease</th>
<th>Distribution and half-life of substance</th>
<th>Post-TPE rebound</th>
<th>Number of TPE required</th>
<th>Frequency of TPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperviscosity due to LPL IgM</td>
<td>90% intravascular 5-6 days</td>
<td>Little</td>
<td>1-2</td>
<td>Daily</td>
</tr>
<tr>
<td>Neuromyelitis optica NMO IgG</td>
<td>45% intravascular 21 days</td>
<td>Slow (over 2 days) but substantial</td>
<td>5-6</td>
<td>Alternating days</td>
</tr>
</tbody>
</table>

Williams and Balogun CJASN 2014
Apheresis Prescription: For IgG Mediated Disease

- 1 PV exchange removes about 65% of intravascular IgG (30% of total body IgG)

- To achieve 70-85% reduction in IgG
 - Theoretically need four 1PV exchanges
 - Practically need 5-6 1PV exchanges over 14 days combined with immunosuppression

- Reductions beyond 70-85% are difficult to achieve due to diminishing efficiency of removal
Target Molecule Kinetics During Apheresis

A

B
Apheresis Prescription: Number of Procedures for IgG Mediated Disease

Fig. 3. Theoretical reduction of IgG following plasma exchange of 1, 1.25, and 1.5 plasma volumes and following re-equilibration of total body IgG. The solid line indicates a 85% reduction and the dashed line a 70% reduction. The absolute reduction in IgG is reduced with each subsequent exchange. Calculations assume no degradation or synthesis of IgG, and re-equilibration of IgG at 2 days.
Apheresis Prescription: Frequency of Treatments

- Frequency – Daily vs. Alternating days

Need to remove quickly pathogenic substance to reduce disease effects

Need time for substance to re-equilibrate into the vascular space

Need to minimize risk of bleeding
Common Prescriptions for Neurological Conditions

- GBS, MG
 - 1 PV exchange x 5 over 10 days

- CIDP
 - 1 PV exchange twice weekly for 3 weeks or 10 treatments over 4 weeks; maintenance q1-3 weeks may be required

- NMO, MS
 - 1 PV exchange x 5-7 over 14 days

Raphael et al 2012; Barth et al 2011; Mehndiratta et al 2015; Weinshenker et al 1999
Apheresis Instruments

- Separation by centrifugation
 - Uses centripetal force to separate components according to their density
 - Can be used for plasma exchange and to remove/exchange cellular components (ex. RBC)
Apheresis Instruments

- Separation by **filtration**
 - Uses membranes that are permeable to HMW proteins but not cells (ultra-filtration)
 - Limited to plasma exchange procedures; usually not used to treat TTP
Apheresis Instruments

Centrifugal TPE
- Citrate (usually)
- Lower blood flow rate
- Peripheral veins or central line
- Process ~1.5 x blood volume
- Plasma extraction ~80%

Membrane TPE
- Heparin (usually)
- Higher blood flow rate
- Central venous line
- Process ~3 x blood volume
- Plasma extraction ~30%

Plasma replacement
- FFP for TTP
- 5% albumin for other indications

Plasma regeneration
- Adsorption column
- Cascade filtration
Centrifugal vs. Membrane Filtration Apheresis

Mark E. Williams, and Rasheed A. Balogun CJASN 2014;9:181-190
©2014 by American Society of Nephrology
Centrifugal Apheresis

- Plasma: SG 1.025-1.029
- Platelets: SG 1.040
- Mononuclear cells: SG 1.070 (monocytes → lymphocytes)
- Polymorphonuclear cells: SG 1.087-1.092
- Erythrocytes: SG 1.093-1.096

“Buffy Coat”
Membrane Filtration Apheresis

<table>
<thead>
<tr>
<th>BUN</th>
<th>Creatinine</th>
<th>VitB12</th>
<th>β2-microglobulin</th>
<th>K Light Chain</th>
<th>λ Light Chain</th>
<th>Albumin</th>
<th>IgG</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.113</td>
<td>1.355</td>
<td>11.8</td>
<td>25</td>
<td>50</td>
<td>66</td>
<td>160</td>
<td>950</td>
</tr>
</tbody>
</table>

Hemodialysis: Diffusion Clearance

Hemofiltration: Convective Clearance

Small Molecules

Middle Molecules

Large Molecules

Therapeutic Plasma Exchange
Types of Apheresis Procedures

- Therapeutic plasma exchange (TPE)
- Cytapheresis
 - Red blood cell exchange
 - Plateletapheresis
 - Leukapheresis
- Photopheresis
TPE: Replacement Fluids

- Plasma (FFP, FP, CSP, SDP)
 - Used mainly for treatment of TTP or aHUS
 - May be added to albumin for other indications if patient has coagulopathy, is actively bleeding or peri-invasive procedure

- 5% human albumin solution
TPE: Vascular Access

- Vascular catheter – double lumen, large bore (temporary vs. permanent/tunneled)
 - Tunneled catheters for prolonged (>2 wks) course of TPE
- 2 peripheral veins
 - Limited to conscious, cooperative, able patient, with good venous access
 - Access line must 14 gauge and return line at least 18 gauge
 - Safer (80% less risk of infection) but multiple uses can lead to vein sclerosis and/or thrombosis
- AV fistula
- Vortex double port
TPE: Indications in Neurology

- Diseases with the best data on apheresis efficacy:
 - CIDP
 - GBS
 - MG both moderate–severe and prethymectomy
 - paraproteinemic polyneuropathies (IgG/IgA)
 - MS (acute relapses)
 - LEMS
Categories

(I) TPE is accepted as first line as primary treatment or in conjunction with other treatments

(II) TPE is accepted as a second line treatment, either alone or in conjunction with other treatments

(III) Role of TPE has not been established.

(IV) TPE is ineffective or harmful
TABLE III. Grading Recommendations Adopted from Guyatt et al. [4,9]

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Description</th>
<th>Methodological quality of supporting evidence</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1A</td>
<td>Strong recommendation, high-quality evidence</td>
<td>RCTs without important limitations or overwhelming evidence from observational studies</td>
<td>Strong recommendation, can apply to most patients in most circumstances without reservation</td>
</tr>
<tr>
<td>Grade 1B</td>
<td>Strong recommendation, moderate quality evidence</td>
<td>RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies</td>
<td>Strong recommendation, can apply to most patients in most circumstances without reservation</td>
</tr>
<tr>
<td>Grade 1C</td>
<td>Strong recommendation, low-quality or very low-quality evidence</td>
<td>Observational studies or case series</td>
<td>Strong recommendation but may change when higher quality evidence becomes available</td>
</tr>
<tr>
<td>Grade 2A</td>
<td>Weak recommendation, high-quality evidence</td>
<td>RCTs without important limitations or overwhelming evidence from observational studies</td>
<td>Weak recommendation, best action may differ depending on circumstances or patients’ or societal values</td>
</tr>
<tr>
<td>Grade 2B</td>
<td>Weak recommendation, moderate-quality evidence</td>
<td>RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies</td>
<td>Weak recommendation, best action may differ depending on circumstances or patients’ or societal values</td>
</tr>
<tr>
<td>Grade 2C</td>
<td>Weak recommendation, low-quality or very low-quality evidence</td>
<td>Observational studies or case series</td>
<td>Very weak recommendations; other alternatives may be equally reasonable</td>
</tr>
</tbody>
</table>

Journal of Clinical Apheresis DOI 10.1002/jca
Thrombotic thrombocytopenic purpura
- Thrombotic microangiopathy – due to anti-CFH, ticlopidine
- Acute inflammatory demyelinating polyneuropathy (AIDP)/Guillain-Barré syndrome
- Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP)
- Paraproteinemic demyelinating polyneuropathy (IgG/IgA, IgM)
- Myasthenia gravis
- Antiglomerular basement membrane disease (Goodpasture syndrome)
- ANCA-associated rapidly progressive glomerulonephritis
- Recurrent focal segmental glomerulosclerosis in transplanted kidney
- Hyperviscosity syndrome
- Desensitization or antibody mediated rejection for renal transplantation
- NMDA antibody encephalitis
- Progressive multifocal leukoencephalopathy post natalizumab
- Wilson’s disease (fulminant)
American Academy of Neurology (AAN) Evidence-Based Guidelines 2011

- Based on a structured literature review from 1995 to 2009

- TPE is established as effective and should be offered in severe acute inflammatory demyelinating polyneuropathy (AIDP)/Guillain-Barré syndrome (GBS) and in the short-term management of chronic inflammatory demyelinating polyneuropathy (Class I studies, Level A).
TPE is **probably effective** and should be considered for mild AIDP/GBS, as second-line treatment of steroid-resistant exacerbations in relapsing forms of MS, and for neuropathy associated with IgA or IgG gammopathy, based on at least one Class I or 2 Class II studies (Class I, Level B).

- TPE is probably not effective and should not be considered for neuropathy associated with IgM gammopathy (Class I, Level B).
TPE is **possibly effective** and may be considered for **acute fulminant demyelinating CNS disease** (Class II, Level C).

There is **insufficient evidence** to support or refute the use of TPE for **myasthenia gravis**, pediatric autoimmune neuropsychiatric disorders associated with streptococcus infection, and Sydenham chorea (Class III evidence, Level U).

TPE is established as **ineffective** and should not be offered for **chronic or secondary progressive multiple sclerosis (MS)** (Class I studies, Level A).
TPE: Complications

Common adverse events (<10%)
- Citrate toxicity
- Hypotension
- Febrile reactions
- Minor allergic reactions

Rare adverse events (<1.5%)
- Arrhythmia
- Thrombosis
- Pulmonary edema
- Seizures
- Major allergic reaction
- Bleeding

Frequency of AE by severity:
- Grade 1: 1.5%
- Grade 2: 2.8%
- Grade 3 and 4: 0.8%

Norda 2003
TPE: Complications

- **Procedure-related**
 - Citrate toxicity
 - replace Ca\(^{2+}\)
 - Hypotension (vasovagal, anemia, hypovolemia, bradykinin-mediated hypotension, etc)
 - transfuse RBC if Hb<70g/L, encourage fluid intake or give IVF, hold BP medications esp. ACEI prior to treatment
- Edema
- Cellular losses – anemia, thrombocytopenia
- Removal of drugs - high protein binding (>=75%) and small volume of distribution (<0.3L/kg) – ex. antibiotics
 - Give once daily meds after TPE
 - Wait at least 24 hrs post MAb administration
TPE: Complications

- **Access-related**
 - Vascular catheter-related:
 - Bleeding, infection, thrombosis
 - Peripheral veins
 - Bruising, scarring of veins
TPE: Complications

- **Replacement fluid related**
 - 5% human albumin solution
 - Immunosuppression
 - Treat every other day, add plasma, consider immune replacement dose of IVIG
 - Coagulopathy
 - Post TPE, PT up by 30%, aPTT up by 100%
 - Most factors replenished within 48 hrs, fibrinogen within 72 hrs
 - Treat every other day, add plasma, avoid invasive procedures
- Febrile reactions
- Transfusion transmitted infections
Apheresis Landscape in Canada

- Population 36.3 million
- Approximately 40 centres provide therapeutic apheresis
- 13,000 procedures were performed on 1,087 patients in 2016
- >60% of procedures were performed by 5 centres

Data from CAG annual meeting 2017
Evolution of Apheresis Practice in Canada

1985

5,345 procedures
40 indications
Most common: Hematology (TTP)

2016

13,000 procedures
128 indications
Most common: Neurology (Myasthenia Gravis)
CAG 2017: Procedures by Specialty

- Neurology CNS: 36%
- Renal: 15%
- Transplant: 10%
- Collagen Vascular Rheumatology: 2%
- Neurology CNS: 12%
- Metabolic: 4%
- Miscellaneous: 1%
- Hematology: 20%
- Dermatology: 0%

c/o Canadian Apheresis Group
Canada 2016: Top Indications for TPE by Diagnosis

CAG 2016 data
Neurology Apheresis Indications in Canada

1990
2,870 procedures for 5 diseases
Top 3:
- Acute GBS
- Chronic GBS
- Myasthenia gravis

2017
5,939 procedures for 23 diseases
Top 3:
- Myasthenia gravis
- CIDP
- Transverse Myelitis

Canadian Apheresis Group
TPE for Neurological Conditions in Canada

CAG data

<table>
<thead>
<tr>
<th>Year</th>
<th>Patients</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>333</td>
<td>3423</td>
</tr>
<tr>
<td>2008</td>
<td>389</td>
<td>3573</td>
</tr>
<tr>
<td>2009</td>
<td>332</td>
<td>2597</td>
</tr>
<tr>
<td>2010</td>
<td>345</td>
<td>3556</td>
</tr>
<tr>
<td>2011</td>
<td>583</td>
<td>5026</td>
</tr>
<tr>
<td>2012</td>
<td>431</td>
<td>3848</td>
</tr>
<tr>
<td>2013</td>
<td>360</td>
<td>3877</td>
</tr>
<tr>
<td>2014</td>
<td>434</td>
<td>4827</td>
</tr>
<tr>
<td>2015</td>
<td>440</td>
<td>5190</td>
</tr>
<tr>
<td>2016</td>
<td>500</td>
<td>5975</td>
</tr>
</tbody>
</table>

CAG data
Canada 2016: Top 5 Neurological Indications for TPE

- MG
- CIDP
- TM
- NMO
- MS

CAG data
IVIG or PLEX: That is the question

- Efficacy, cost and safety are likely similar; choice depends on availability, acceptability of side effect profile and convenience
 - GBS, CIDP, MG crisis
- Efficacy likely higher for PLEX in
 - MuSK +ve MG
- PLEX is the preferred choice in
 - NMO, MS

Gwathmey et al 2014
Trends in Apheresis vs. IVIG

Mean rate of growth = 1.1%

Mean rate of growth = +7.3%
The top clinical trial opportunities in therapeutic apheresis and neurology

The National Heart, Lung, and Blood Institute convened the 2012 State-of-the-Science Symposium in Therapeutic Apheresis (TA) to identify and prioritize future research proposals:

- 6 subcommittees formed based on organ system, pathophysiology, and technology/special considerations
- Members included clinical subject matter experts and basic scientists
- Each subcommittee developed concept proposals which were then presented, evaluated, and prioritized based on scientific importance, clinical significance, and feasibility by the attendees

Neurology subcommittee developed eight concept proposals:

- TA in neuromyelitis optica;
- TA vs. IVIG in anti-muscle specific kinase associated myasthenia gravis, severe ADEM, and anti-NMDA encephalitis
- Extracorporeal photopheresis in relapsing remitting multiple sclerosis, polymyositis
- Fibrinogen/low-density lipoprotein apheresis in idiopathic sudden sensorineural hearing loss
- Creation of a rare neurologic disease registry and biorepository
Apheresis in Neurology: Current Trials

- Alzheimer’s
- GBS
- MS
- NMO
- MG
- Natalizumab removal in MS
- Autoimmune encephalitis
- Amyotrophic lateral sclerosis
- Acute/severe inflammatory demyelinating diseases
Questions?